




Computation and the Genome Project 

The genome 
is more than 
a blueprint 

Elsewhere in this issue the nature 
and function of the human genome 
are described from a biochemical point 
of view. We begin by describing 
the genome in computational terms. 
Since the DNA polymer is made up 
of four monomer units, whose standard 
abbreviations are A, C, G, and T, a 
DNA molecule may be represented by 
a character string using only these four 
letters. The chemical monomers are 
called nucleotides; the strings are known 
as nucleotide sequences. The human 
genome, from this point of view, is a 
set of 24 character strings (representing 
24 chromosomes), with a total length of 
a few billion letters, that is, with a size 
of a few gigabytes. 

The genome is often called the blue- 
print for the species. In brief, and very 
roughly speaking, the genome is a con- 
catenation of genes; each gene contains 
the plans for a protein; and proteins are 
the key building blocks of the body. 
(Essentially all enzymes-biological 
catalysts-are proteins, much of the 
structure of the body is protein, and the 
molecules that are not proteins are made 
by those that are.) For a description 
of how a gene is expressed to produce 
a protein see "Protein Synthesis" in 
"Understanding Inheritance." 

The blueprint metaphor is very useful, 
but does break down in some respects. 
A blueprint for a home normally depicts 
only the home. But the genome, even as 
a blueprint, does much more. There are 
enzymes that read genes and make the 
corresponding proteins, and the genome 
specifies these (as if a blueprint con- 
tained drawings for hammers, nails, and 
workmen). There are even enzymes for 

rearranging the genome (as if a blueprint 
were to specify an independent-minded 
contractor). 

Furthermore, the genome contains 
many regions that, rather than listing 
specifications for protein, interact with 
enzymes in process-control mechanisms. 
For example, certain enzymes known 
as transcription factors must bind to 
control regions near a gene each time 
that gene is used to produce a protein. 
Such regions are altogether outside the 
blueprint metaphor. So it is profitable 
instead to think of the genome as a 
program, written in a largely unknown 
programming language. Within the 
program are data arrays-the codon$* 
triplets that account for the "blueprint? 
parts of genes. The main program 
encodes a number of other related 
programs that act on the main one: 
a copier, interpreters, and rearrangers. 
A good part of the main program is 
concerned with proper communication 
between the main and related programs. 

The goal of 
the Human 

Genome Project 
is an atlas 

The final goal is the annotated 
sequence. The eventual goal of the 
Human Genome Project is to obtain 
the full nucleotide sequence of the 
genome, with each region annotated 
as to function. From the point of view 
of the program metaphor, this means 
obtaining a full, documented listing of 
the program. 

In one sense this goal is only the 
culmination of a trend. It has become 
clear over the last two decades that 
almost any problem in biology can be 

more easily solved if the underlying ge- 
netic specification (that is, the annotated 
nucleotide sequence) of the relevant 
biochemistry is known. And because of 
the revolution in biotechnology, we are 
now able to see the genetic specification 
of any organism in as much detail as 
we wish (and can afford: the current 
cost of sequencing an average gene is 
on the order of $10,000, and isolating 
the relevant genetic material may well 
cost more). Annotated nucleotide se- 
quences have thus accumulated at an 
exponentially increasing rate. 

However, the Human Genome Project 
goes far beyond the trend of ever 
increasing sequence determination, for 
its aim is not just more sequence. In 
fact the hallmark of the genome project 
is an interest in the design and working 
of the genome as an organic whole. 

Obtaining the full sequence and 
gaining an understanding of its overall 
organization will require many years 
and a significant amount of money. 
What will we gain that could not be 
had by a piecemeal approach? One 
example comes from the determination 
by a European collaboration of the full 
sequence of yeast chromosome 111. (The 
human genome project includes the 
study of several model organisms.) One 
of the surprises in this sequence is that 
there seem to be many more genes than 
expected. Since the functions of most 
of those genes are not yet known, their 
discovery by other methods would have 
been long in coming. 

On a more fundamental level, through 
the genome project we will learn a great 
deal about the programming language 
in which organisms are specified. The 
human genome is quite possibly the 
most complex object yet studied by 
science, encoding thousands of protein 
products which, working together in 
intricate combinations, manage the 
genetic program, build the human body 
from scratch, and maintain it for a 
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V = "variable" domains 
J = "joining" domains 
D = "diversity" domains I I 

L = "leader" sequences (corresponding 
amino acids are deleted after translation) 

I I - 

Functional VDJ gene 

Figure 1. More Complex Genes: The Immunoglobulins 
The immune system produces somewhere between a million and a hundred million different immunoglobulins. If each of these protein 
antibodies were encoded by a separate gene, the genome would have no room to encode anything else. In fact the immunoglobutins 
are specified in a tiny fraction of the genome. How this is accomplished is an excellent example of "genome programming." A typical 
immunoglobulin molecule is made up of four protein subunits: two identical "heavy chains" and two Identical "light chains." Each of these 
has a "constant region" to interact with immune-system cells, and a "variable region" that is specific to a particular foreign molecule. The 
figure shows a schematic diagram of the genetic information corresponding to the variable region of a heavy chain. In germ-line DNA, that 
is, the DNA inherited from one's parents, there are several hundred V ("variable") domains, followed by twelve D ("diversity") domains, 
followed by four J ("joining") domains. In lymphocytes (white blood cells) this DNA is rearranged so that a particular V, D, and J region 
are joined to make an exon for the variable region of the heavy chain. Many thousands of different combinations are produced in different 
cells. In addition, the rearrangement Is somewhat inaccurate, producing more variants. Also, In this region mutations are unusually 
common, even during the life of one cell, producing still more variation. The light chains are produced by similar mechanisms. Finally, 
each of the many light chains can pair with each of the many possible heavy chains, so that there are billions of possible immunoglobulins. 
From these the immune system duplicates and maintains those that turn out to be useful in recognizing foreign molecules. 

lifetime. We now know little bits of 
how this complexity is orchestrated; 
concentrating on the big picture will 
teach us much more. 

Second, the fully described sequence, 
like a geographic atlas or a star atlas, 
is a resource of enduring interest. In a 
deep sense biology, especially molecular 
biology, is data-driven. While physics 
and chemistry deal with general laws, 
biology, like geography and history, 
deals in large part with many specific 
cases. There are generalizations in 
biology but, while the generalizations 
of physics and chemistry are close to 
being exact models from which one 
can predict the behavior of matter, the 
generalizations of biology are more 
in the nature of analogy. They guide 
the intuition rather than enabling one 
to predict the behavior of the system. 

General principles in biology are fre- 
quently implemented by each organism 
in idiosyncratic ways. There is, for 
example, a so-called "universal" genetic 
code by which the nucleotides of genes 
are translated three at a time into the 
amino acids of proteins. But many 
organisms have slightly different codes. 
Thus, whereas in many areas of science 
one gathers data to establish a point 
and, once the point is established, one 
is done with the data, in biology the 
data are central and are referred to again 
and again. 

The intermediate goal includes 
coarser-resolution maps. We are still 
very far from having the complete se- 
quence. At present only about 6 million 
nucleotides of human sequence (about 
0.2 percent of the total) are known. 
Furthermore, the cost of determining the 

sequence is currently too high (on the 
order of $1 per nucleotide) to contem- 
plate an immediate drive to obtain the 
full sequence. Fortunately, much useful 
information can be obtained without 
sequencing. Maps of lower resolution 
than the sequence can be based on 
various sorts of landmarks-features 
of a chromosome detectable in some 
experiment. The distances between 
such landmarks are typically measured 
in ways that give one a very rough 
approximation of the number of base 
pairs between them. All such maps may 
be considered to be conceptually built 
on the (yet unknown) sequence as a 
coordinate system. 

One technique with immediate med- 
ical application is linkage mapping. 
Chromosomes break and recombine 
fairly frequently as the genetic material 
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Decades of Nonlinearity: the growth of 
DNA sequence data 

Christian Burks, Michael J. Cinkosky, and Paul Gilna 

T h e  first nucleotide sequence was published in 1965; it was the sequence of an 
RNA molecule less than 100 nucleotides long. The methods used were so arduous 
that until the mid-1970s a person could determine the sequence of only about a 
hundred bases in a year. Then Maxam and Gilbert in the U.S. and Sanger in England 
developed new sequencing techniques that were a hundred times faster (see "DNA 
Sequencing" in "Mapping the Genome"). Figure 1 shows that today biologists are 
determining the complete sequences of pieces of DNA over 100,000 nucleotides in 
length. Almost 100,000,000 nucleotides of sequence data have been published-a 
wealth of information that has formed the basis for many scientific discoveries. How 
has the enormous and rapidly growing quantity of data been maintained and managed? 

Figure 1 

As shown in Figure 2a, the rate of sequence-data accumulation was increasing rapidly 
in the late 1970s. (Data for Figure 2a were compiled from the GenBank database, 
which includes the publication date and length of each sequence entered.) In response 
to the growing interest in gathering and analyzing the data, the biology community 
held several discussions in 1978 on establishing a database facility to collect, 
organize, and distribute sequence data and annotation about each sequence. For 
design purposes, the operation of a database can be compared to industrial processes 
in which a set of input objects is transformed into a set of output objects. In a 
sequence database, the input is DNA sequences generated by individual laboratories 
and stored in individual formats with varying amounts of annotation; the output is 
a collection of DNA sequences stored at a central facility in a uniform format with 
a precisely defined degree of annotation. For any such process to be workable and 
efficient, the mechanism for the process must match the volume of the input stream. 

During the planning stages for the public sequence databases, how fast did biologists 
expect the amount of data to grow? Up to 1981 the few recorded projections 
generally assumed linear growth. Figure 2b shows a linear projection-based on the 
average annual rate from 1975 to 1977, 25,000 nucleotides per year-for the period 
up to 1986. (Note that the scale of Figure 2b compresses the previously impressive 
growth up to 1978.) The linear model predicts that under 300,000 nucleotides of 
sequence data would have been accumulated by 1986, and that a database project 
would have had to handle no more than 30,000 in any year. Funding-agency planning 
and subsequent project proposals to the agencies were based on that linear model. 
In 1982 the GenBank project, the American sequence database, was established at 
Los Alamos through a five-year contract with the NIH. (Also in that year a database 
storing essentially the same information was established at the European Molecular 
Biology Laboratory; Japan developed a similar institution a few years later.) Because 
a steady rate of data accumulation was expected, GenBank was staffed with only a 
few people who were expected to search the literature and enter into a database all 
the DNA and RNA sequence data that would appear. 
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Suppose the community had instead projected exponential growth for the sequence 
data. Figure 2c shows that if we use the annual rate increase for the years 1975-77 (64 
percent per year) to project the accumulation over the period 1978-86, an exponential 
model predicts an accumulation 15 times that of the model in Figure 2b, and a rate 
of accumulation orders of magnitude higher. Clearly, in that scenario a database 
project could not rely on a constant number of staff members each processing data 
at a constant speed. 

What really happened? As can be seen in Figure 2d, the increase of sequence data 
far outstripped even the exponential model, and completely dwarfed the linear model 
that was actually used to design GenBank. This created a crisis for the scientific 
community wanting access to all these data and in particular for the GenBank project, 
which was responsible for providing access. 

In 1986-87, as we planned and developed proposals for the second five-year GenBank 
contract, we revisited the issue of modeling the growth of sequence data. Figure 2e 
presents the envelope in which we expected the growth to lie. The lower limit is an 
extrapolation from the previous three years assuming a constant rate of acceleration. 
The upper limit is based on the assumption that seven billion bases of sequence, 
twice the total of the human genome, will be determined by 2005 (consistent with 
the goals of the Human Genome Project). The rate of acceleration is assumed to 
increase linearly to bring the curve to that endpoint. With the genome project in 
mind, we developed a new strategy-and corresponding mechanisms-for the flow 
of data in and out of the database (see "Electronic Data Publishing in GenBank" 
below) that we believed would accommodate growth within the projected envelope 
shown in Figure 2e. 

Five years later, Figure 2f shows that actual growth of sequence data has indeed 
remained within this envelope, and that the accumulation of nucleotide sequence 
data continues to accelerate. It is worth noting that if the Human Genome Project 
goals for sequencing are to be met, the rate of sequencing will have to accelerate 
considerably over the next decade. rn 
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is passed from parent to offspring, and 
measuring the frequency with which 
two traits are inherited together allows 
one to calculate the probability that 
the responsible genes are on the same 
chromosome, and if so, about how 
far apart they are. Linkage mapping 
has been used successfully to find the 
approximate location of several disease 
genes, as a first step in the process of 
locating and studying the defect. The 
cystic-fibrosis gene was recently isolated 
in this way, leading to a much clearer 
understanding of the disease. 

Thus the intermediate goal of the 
Human Genome Project is an atlas 
of maps containing one map for each 
chromosome. Each map is conceptually 
an annotated sequence, although the 
sequences are, at the moment, very 
sparsely filled in. 

A complication in this picture is 
that most groups currently maintain 
separate maps for linkage-mapping 
data, sequencing data, and data re- 
sulting from other techniques. This 
is because of disparities in units of 
measurement. Distances measured in 
linkage experiments, for example, are 
expressed in morgans. (The distance 
in morgans between two sites is the 
average number of recombination events 
between them in one meiosis-one set 
of cell divisions producing an egg or 
sperm.) But because frequency of 
recombination at a particular site on the 
chromosome depends strongly on the 
(usually unknown) nucleotide sequence 
at the given site, distances in morgans 
do not translate by any fixed formula to 
distances in nucleotides. Nevertheless, 
we will show below that it is both 
possible and profitable to integrate these 
different views of the chromosome into 
a single map. As well, differences 
between individuals (there are several 
billion human genomes, not one) may 
be best represented as variants within a 
single comprehensive map. 

Both the creation 
and communication of 

maps depend on 
computational tools 

Computation plays a central role 
in almost every facet of the Genome 
Project. This may come as a sur- 
prise, since biology has not traditionally 
been as heavily computational as, for 
example, physics or chemistry. But 
molecular biology is different from 
traditional biology, and the Genome 
Project accentuates the differences. 
There follow two examples. 

Disperse workgroups depend on 
complex communication. Since maps 
are of perennial interest, and also grow 
and change daily, there is a great 
need for instantaneous communication 
between the producers and consumers 
of map information. The need for 
continuous communication is currently 
most often seen in working groups 
spread across several laboratories and 
engaged in the search for a single disease 
gene. A good example is found in the 
consortium of laboratories searching 
for the genetic defect which leads to 
Huntington's disease. 

In such groups continuous com- 
munication is often now maintained 
by faxing text or drawings of maps. 
However, maps are rapidly growing too 
complex to manage in this way. In 
order to track positional information 
on thousands of map elements at many 
levels of resolution, undergoing frequent 
revisions and additions, one needs highly 
structured databases linked by computer 
network to graphical interfaces at many 
sites. This key computational need will 
require significant development beyond 
what is currently available. 

In the next section we will discuss 
the major challenges in information 
management for the Human Genome 
Project. 

Recognition of significant patterns 
in sequence data depends on sophisti- 
cated analysis. Computation also plays 
a central role in discovering the language 
of the genome. Many biologically 
significant patterns in sequence data are 
invisible to the eye, but can be detected 
with the aid of computation. 

Such insight comes frequently, but 
an early example is still one of the 
prettiest. In 1983 R. Doolittle and 
his colleagues were comparing newly 
determined sequences to sequences 
archived in existing databases, and 
discovered that the transforming (that 
is, cancer-causing) protein p2gSis pro- 
duced by simian sarcoma vims was 
remarkably similar to platelet-derived 
growth factors (PDGFs), proteins whose 
function in stimulating cell growth was 
well known. This discovery suggested 
the natural hypothesis that the sarcoma 
(connective-tissue cancer) caused by 
p28sis results from a malfunction in 
the normal biochemical pathways for 
PDGFs. Though the cancers are still 
imperfectly understood, the hypothesis 
seems to be sound. It has been shown 
that in the transformation process p28sis 
interacts with the normal cellular recep- 
tors for PDGFs. 

In the final section of the article we 
will discuss the current state of the art 
in computer interpretation of sequence 
data. 
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MLLTSSLHHPRHQMSPGSWKKLIILLSCVFGGGGTSLQNKNPHQPMTLTWQGDPIPEELYmLSGHSIRSFDDLQRLLQGDSGKEDGmLD - - - 
MNRCWALFLSLCCYLRLVSAEGDPIPEELYEMLSDHSIRSFDDLQRLLHGDPGEEDGAELD 

Figure 2. Sequence Alignment between a Sarcoma Oncogene and a PDGF 
The upper sequence is the amino-acid sequence of the precursor of the cancer-causing protein p2Wis produced by simian sarcoma 
virus, as translated from nucleotides 3657 to 4772 of the virus's genome. The lower sequence is that of the precursor to a human 
protein, c-sis/platelet-derived growth factor 2, as translated from cDNA. Lines between the sequences indicate identical amino acids. 
The conspicuous similarity between the two proteins suggests that the viral gene originated through incorporation into the virus's 
genome of human sequence or similar sequence from another primate. Moreover, SIS/PDGF2 promotes normal cell growth and its 
mRNA has been found in tumors, suggesting that ~ 2 8 ~ ' ~  causes cancer by a mechanism related to the functioning of SISIPDGFZ. 
(The amino-acid abbreviations are Ay alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; 
I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; 
W, tryptophan; Y, tyrosine.) 

The Human 
Genome 

Project requires 
advances in 
information 
management 

Many components of an information- 
management system for the Genome 
Project already exist-commercial data- 
base management systems (DBMSs), 
computer networks, and hardware for 
graphical display-but many of the 
components specific to biology have yet 
to be developed. For example, though 
for fiscal accounting systems the data 
categories and transactions have been 

standardized for many years, the lan- 
guage in which an emerging description 
of the genome is being written changes 
and expands frequently. Without being 
comprehensive, we present in this sec- 
tion a few of the key problems and how 
they are being solved. 

Efficiency is a natural focus at the 
stage of covering ground. In the early 
stages of a mapping project, when a 
large portion of the map-to-be is "terra 
incognita," the main business is simply 
data acquisition, and a key focus of the 
project engineers is efficiency in the 
data-acquisition process. 

LANL is placing great emphasis on 
building a "physical map" of human 
chromosome 16. A physical map is 
one which gives access to the DNA of 
any region, and is made by determining 
pairwise overlaps among a large number 
(about 4000 at Los Alamos) of cloned 
segments of DNA, and then deducing 
the arrangement of the clones relative 

to each other and to the chromosome 
(see "The Mapping of Chromosome 
16"). It almost goes without saying 
that an electronic database is required 
for efficient information processing 
in a mapping project the size of that 
at LANL. To give some idea of the 
complexity of the information we note 
that the physical-mapping database at 
Los Alamos currently tracks the sizes 
and sources of approximately 100,000 
fragments of DNA from chromosome 
16, and records over 7,000,000 pairwise 
positional relationships relevant to the 
emerging map. 

The Los Alamos database is currently 
implemented in the Sybase Relational 
Database Management System (DBMS) 
on a network of Sun workstations. 
Because the Sybase software handles 
the network transparently, it appears to 
each project participant as if all the data 
were stored and immediately available 
on his or her own desktop. 
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SCORE: =- -? a program for computer-assisted 
scoring of Southern blots 

T. Michael Cannon, Rebecca J. Koskela, Christian Burks, Raymond L. Stallings, 
Amanda A. Ford, Philip E. Hempfner, Henry T. Brown, and James W. Fickett 

The Human Genome Project aims to collect unprecedented (for molecular biology) 
amounts of information, so the transfer of repetitive tasks to machines is essential. 
As part of the LANL physical-mapping effort, we have partially automated the task 
of entering clone-fingerprint data into computers. One aspect of the automation 
was the development of a simple image-manipulation program called SCORE. This 
program has improved the accuracy of the data entry and sped up the process by 
an order of magnitude. 

Restriction-fragment 
Length Data 

Decreasing 
fragment lengths 

Band of identical 
restriction fragments 

from digestion 
of a clone 

Lanes marked C 
contain standard 

fragments used for 
length calibration 

Gel Image 
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As explained in "The Mapping of Chromosome 16," the Los Alamos physical- 
mapping project uses clone fingerprints that consist of two kinds of data. The first 
is a list of the lengths of DNA fragments obtained by digesting a larger cloned 
fragment with a restriction enzyme and then separating the restriction fragments by 
length using gel electrophoresis. On the previous page appears a sample photograph 
of a gel. The gel is divided into vertical lanes, each lane containing all the fragments 
of one digest of one clone. Every clone is subjected to three digests, so there are 
three lanes of fragments from each clone. Each fuzzy horizontal band within a lane 
consists of identical restriction fragments from the digest contained in the lane. The 
band's vertical position gives the length of the fragments in it. 

The second kind of data is a Southern blot of the gel that indicates whether or not (or 
to what degree) certain repetitive sequences are present in each restriction fragment. 
The figure below is a blot image produced by hybridization of repetitive sequences 
to the gel shown on the left (see "Hybridization Techniques" in "Understanding 
Inheritance"). Bands of fragments produce a signal on the blot image only if they 
contain the particular repetitive element being tested for. 

Cot1 Hybridization 
Data 

Strong hybridization 
signal indicates that 
the restriction 
fragments at this 
position contain 
relatively long stretches 
of Cot1 repetitive 
sequences 

Blot Imagt 
1 hi 
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The blot image is used to 
assign a score to each band 
indicating the strength of its 
hybridization signal, a process 
known as scoring the blot. 
Therefore the bands on the 
blot image must be matched 
with the corresponding bands 
on the gel image. Formerly 
the two images were matched 
by hand, one region at a time. 
Each fragment was identified 
manually by numbering the 
lanes and bands on the pho- 
tographs. After the scores 
were assigned, they were typed 
into our mapping database in 
a separate operation. Scoring 
the blot was the most labor- 
intensive part of fingerprinting. 
Now we score blots on a 
scientific workstation using the 
SCORE program. 

Before SCORE is run, the frag- 
ment lengths are determined by 
a commercial image-processing 
workstation. Another program 
takes the report from the image 
processor and stores the lengths 
in the database. Also, the 
blot image is digitized using 
a desktop scanner. SCORE 
retrieves the fragment lengths 
from the database and con- 
structs a schematic of the gel 
image in which the bands are 
denoted by colored horizontal 
lines positioned according to 

their lengtn. rhe program then superimposes the digitized blot image on the 
schematic gel image. The figure above shows the two images on the previous pages 
as stored in the computer and superimposed; they match only approximately. 
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When the two images are on 
the screen, the user chooses 
two points on each image that 
should be aligned. The pro- 
gram then resizes and moves 
the digitized blot image to align 
it with the schematic gel image. 
The figure at right shows how 
the user sees the two images 
overlaid and matched on the 
computer screen. 

At this point the actual scoring 
takes place. The user points to 
a band with a mouse, is given 
a menu of possible scores, 
and chooses one. Thus the 
program retains the use of ex- 
pert human judgement where 
necessary. SCORE displays 
the score chosen, next to the 
band, for the rest of the session 
(colored letters in the figure). 
Any score may be revised at 
any time. If a band shows on 
the blot image but not on the 
gel image, the user may add a 
new fragment to the database. 
When all fragments have been 
scored, the program places 
their scores directly into the 
database, each score being 
associated with the proper 
fragment. 

This program has not only cut 
the time needed for scoring the 
images by a factor of ten, but 
it has eliminated typographical 

L 
~ornp'st'&i~fi h d  the Genome Project/SCORE 

errors in data entry. Using SCORE also has the advantage that the complete 
fingerprint data are in a database, easily accessible by network to the whole group 
working on the project and readable by the map-construction software, from the 
moment they are first determined. 
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For most genome projects, includ- 
ing that at LANL, interface software 
that translates between internal storage 
format and the users' intuitive view 
of the data is developed locally. The 
accompanying sidebar, "SCORE: a 
program for computer-assisted scoring of 
Southern blots," shows one specialized 
graphical editor which has facilitated 
rapid and error-free data entry.. 

Building and maintaining such inter- 
face software is itself a formidable task. 
Efficiency in the software development 
process is therefore as important as 
efficiency in the primary task of data 
acquisition. So although it would be 
pleasant to have specialized interface 
software for each data-processing task, 
there is a need for some more general 
and less expensive interface. This need 
is especially acute because experimental 
techniques and strategies for mapping 
are constantly changing as biotechnology 
advances, so that specialized software 
often has a rather short lifetime. 

This need for a general and inex- 
pensive interface has been met by a 
"database browser" developed by Robert 

Sutherland at Los Alarnos. Someone 
using the browser sees any of a set 
of similar screens, one for each type 
of object in the database. (Types of 
objects include clone, clone overlap, and 
DNA sequence.) An example of a data 
screen is shown in Figure 3. All the 
screens follow the same style, making 
the browser easy to learn. Each one lists 
both the attributes of the current object, 
and also the other kinds of objects related 
to the given one. One can retrieve data 
either by filling in known attributes and 
asking the software to complete the form, 
or by following links from one object to 
related ones. Thus the browser provides 
access to all data in the database without 
requiring the user to know a specialized 
query language. 

The current version of the browser 
is quite easy to maintain, because 
all the screens are derived from a 
template set of forms and procedures, 
in a relatively straightforward way. 
Nevertheless, every time the database 
structure changes (a not infrequent 
occurrence, as experimental methods 
and strategies change) some custom 

A Find Insert! update Delete Follow Link! Clear! 
- 

- 

CLONE DATA EMTRY FORM: Please enter all clone data. 

Clone name: 310A12 
Project Name-> Chromosome 16 physical mapping 
Library Mame-> 16-cosinids 
Person Name-> Sutherland, Robert 
Date Entered: May 7, 1991 10:55:57AM 
Clone Length: 41.36 
Length Copf: 
Length Error: 
Exclude Clone: 
Clone Location: 30H3 

Comment : 

Rows Found: 50 Current Row: 1 First Row In Buffer: 1 

Other Links: 
Clone Contig 
Clone Signal 
Grid Clone 
Hybridization 
Lane 
Library Clone 
Map Clone 
Overlap 
Position -Sequence) 

Figure 3. The Clone Screen in the Database Browser 
Attributes of the clone include, for example, the name of the protect using it and the clone 
insert length. Related objects include sequences, for example; if the user highlights "se- 

quence" at the right of the form, and then clicks on the button "follow link," any sequen- 
ces derived from this clone will be retrieved. 

programming is needed. A new version 
of the browser is planned, in which the 
browser software itself will be capable 
of reading the database structure and 
configuring itself to match. We think the 
new version will be invaluable to other 
laboratories newly setting up mapping 
efforts, enabling them to put in place 
a rudimentary data-management system 
very quickly. 

Map definition is a natural focus 
at the stage of mature results. In the 
fourteenth century, when maps were 
mostly local, it was possible to make 
reasonable maps assuming the earth was 
flat. In the age of exploration, however, 
the science of map making came to 
depend on a clearer understanding 
of the shape of the earth, and on an 
analysis of the distortion resulting from 
projecting a spherical surface onto flat 
paper. Similarly, now that the Genome 
Project has accumulated mapping data 
that cover several large regions of the 
genome fairly densely, it is time to 
consider carefully just what genome 
maps are and how we should go about 
constructing them. 

It might seem as if a one-dimensional 
map of a DNA molecule should be 
trivial, or at least that it should be 
simpler than a geographic map. But in 
fact genome maps are more complex 
than geographic maps in at least three 
important ways. Two of these-the use 
of incommensurable units of distance 
and the variation among six billion 
humans-have already been mentioned. 

The third is a high level of ambiguity 
in the data. Given two known points on 
the earth's surface, it is straightforward 
to estimate the distance between them. 
But given two genes or two fragments 
of cloned DNA, it is typical to go to 
considerable trouble only to estimate 
the probability that they are adjacent. 
Distance relationships are probabilistic 
not only because the mapping exper- 
iments give only partial information, 
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but because copies of many genes 
and other sequences occur more than 
once in the genome with only small 
differences. Since all phy sical-mapping 
methods depend on sequence similarity 
to determine whether two pieces of 
DNA are identical, mapping experiments 
sometimes indicate overlap where there 
is none. Derivation of a consensus map 
from fuzzy, probabilistic data is one 
of the more interesting and important 
challenges in the Genome Project. 

Map construction is an optimization 
process based on fuzzy objectives. 
Probably because of the analogy to more 
familiar geographic maps, investigators 
often see the map-building process as 
fundamentally incremental. That is, at 
any given stage of map construction, 
one takes as given the map as it stands 
so far, and looks for the best way to 
add new data to the existing structure. 
Even in the apparent exceptions to this 
practice, as when a committee attempts 
to reconcile two contradictory maps, one 
can observe a fundamentally incremental 
approach-to save as much as possible 
of an existing structure and add new, or 
contradictory, data in as conservative a 
way as possible. 

But recognition is growing that map 
construction requires a global, non- 
incremental procedure. The reason 
is simple-as long as the data are 
probabilistic, it is likely that parts 
of the map as constructed so far are 
wrong, so that the entire map needs to 
be reconsidered when new data come 
to light. (For example, among those 
pairs of DNA clones which have a 
0.9 probability of overlap, we expect, 
by definition, one pair out of ten not to 
overlap.) Therefore one should treat map 
construction as an optimization problem. 
Adopting this point of view, one takes 
all the probabilistic statements about 
positions as a large set of objectives 
which a "good" map should fulfill, 
and attempts to reconcile them all 

simultaneously, as well as possible, in a 
consensus map. Calculating an explicit 
fitness for maps, rather than relying 
on intuition is, though mathematically 
routine, a novel idea for many physical- 
mapping groups. The definition of a 
good criterion for fitness is a difficult 
problem; it will probably not be solved 
in a standardized way for some time. 

As input to the optimization problem, 
it is important to correctly state the 
objectives. That is, whereas current 
procedure is often to interpret raw 
experimental data by placing a new 
point on the map directly, there should 
be an intermediate step of recording 
the results of the experiment alone-an 
overlap between two clones, say, or 
a localization of some clone to the 
region between two known genetic 
markers-with realistic ambiguity in 
position and probability. 

For the optimization itself, a num- 
ber of techniques might be applied, 
including linear programming, simu- 
lated annealing, and genetic algorithms. 
We (the author, M. Cinkosky, and 
D. Sorensen) have adapted genetic- 
algorithm techniques to develop an 
optimization algorithm for assembling 
physical maps. We chose the genetic- 
algorithm techniques because the overlap 
data often contain apparent contradic- 
tions and genetic algorithms are known 
to be robust in the face of such data, 
and also because the map objectives 
are not naturally stated as linear equa- 
tions or inequalities. The input to our 
algorithm can be clone-overlap data 
from any kind of experiment, as long 
as the data fit into the categories of 
overlap likelihoods, estimated overlap 
extents, and estimated clone lengths. 
For computational efficiency, the input 
clones must be divided into a priori 
contigs in which each clone is connected 
to the others by a chain of overlaps all 
having probabilities greater than 0.5. 
The genetic algorithm then searches 

for an arrangement of the clones in a 
contig which fits the experimental data 
well, but does not try to determine the 
overall arrangement of the contigs on the 
chromosome. The algorithm is called 
GCAA, for Genetic Contig Assembly 
Algorithm. Figure 4 illustrates GCAA 
as it is used in LANL's chromosome-16 
mapping project. 

A genetic algorithm operates by a 
simulation of evolution. GCAA begins 
by constructing a population of a few 
hundred different arrangements of the 
clones assigned to an a priori contig. 
In each arrangement, called a GCAA- 
chromosome, every clone is randomly 
assigned a length close to its measured 
length. Every clone is also assigned 
a position to the right of an arbitrary 
starting point. The analogy to evolution 
is that GCAA-chromosomes "mate" and 
produce "children" whose characteristics 
are determined by a process resembling 
genetic recombination. Then only the 
"fittest" GCAA-chromosomes survive to 
mate in future generations. 

GCAA calculates the fitness of each 
GCAA-chromosome by checking how 
well it corresponds to the data, with 
discrepancies from the most certain 
data points given the most weight. 
Three separate measures of fitness 
are computed: one for the overlap 
probabilities, one for the overlap lengths, 
and one for the clone lengths. For the 
overlap-likelihood and clone-length data, 
discrepancies from the most certain data 
points are given the most weight. 

In the core of the algorithm, the 
following procedure is carried out re- 
peatedly: GCAA selects a "tournament" 
of four GCAA-chromosomes at random. 
The two chromosomes whose clones 
have the most disparate positions then 
"mate" and produce two "children." 
In each child of the mating, some of 
the clones are positioned as in one 
parent, and the other clones have their 
arrangement taken from the other parent. 
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The Genetic Contig Assembly Algorithm (GCAA) 

Input to CGAA 

Fingerprint data and other experimental 
data on clone overlaps 

Calculate map objectives from data using 
computer programs 

Map-Objective Database 

The three classes of objectives 
currently used: 
1. Likelihood of overlap between 
pairs of clones. 
2. Extent of overlap.* 
3. Clone lengths and length 
uncertainties. 

The clones are divided 
into a priori 

contigs-groups in which 
each clone is connected to 
each other by a chain of 

overlaps all having likelihoods 
greater than 0.5. 

The map-objective data for 
the clones in each a priori 
contig are retrieved and 

stored together for 

*The extent of overlap between two 
clones is currently computed by adding 
the lengths of the restriction fragments 
that the two clones appear to share. We 
hope to develop a version of GCAA that 
optimizes locations of restriction frag- 
ments directly, rather than using only 
summary overlap information. This 
method would help ensure the consis- 
tency of overlaps between different pairs 
of clones. 
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The mating scheme is described in more 
detail in Figure 4. 

After carrying out the mating, GCAA 
evaluates the fitnesses of the two child 
chromosomes. If some child's overlap 
and overlap-extent scores are both 
greater than or equal to those of any 
of the original four members of the 
tournament, then that child replaces the 
least fit original member. (If both scores 
of the two chromosomes are equal, the 
clone-length score breaks the tie-its 
only function in the whole procedure.) 
The remaining four chromosomes are 
returned to the pool, and a new tourna- 
ment is selected. The process is repeated 
thousands of times, after which the 
fittest GCAA-chromosomes, for most a 
priori contigs, agree quite well with the 
data. In practice, experienced users can 
often improve the output of the genetic 
algorithm by making small changes. 
However, few if any people could start 
from scratch with a sizable number of 
objectives and produce a result that 
needed only minor changes. 

GCAA has been successfully used 
at Los Alamos to construct or improve 
large portions of the chromosome-16 
physical map. At the current time, the 
strategy for completing the map is based 
on extending contigs in a highly directed 
way by "walking off the ends" (see "The 
Mapping of Chromosome 16"). Thus it 
is particularly crucial right now that 
we have a computational method to 
deduce as well as possible the correct 
arrangement of the clones in all contigs. 

New data on the chromosome-16 map 
are, of course, accumulating daily. So it 
is essential to be able to apply GCAA in 
real time. At Los Alamos, H. Brown has 
built a graphical interface called map_ed 
for the GCAA algorithm which allows 
a user to retrieve map objectives from 
the database, run GCAA, and display or 
print the resulting map. Thus as new 
information accumulates, it is always 
possible to see its effect on the emerging 
map. Map-ed is being replaced by a 
more versatile system called SIGMA 
(discussed below). 

LAN1 Clone Display 

Integration: one map is better than 
many maps. In everyday life one 
occasionally needs to use several maps 
of a region at one time, for example a 
state highway map, a map of a national 
forest, and a contour map of part of the 
forest. Each map is at a different scale 
and has different information, so all are 
needed. 

The same situation obtains with 
genome maps, but while handling sep- 
arate geographic maps is only incon- 
venient, with genome maps the map- 
construction process (which of course is 
foundational) is made much less accurate 
by having the data collected and ar- 
ranged piecemeal. In fact, separate maps 
are all intertwined and all incomplete, 
and any one can be better assembled 
with information from all the others. 

Many current map-management sys- 
tems have no graphical component at 
all. Of course this considerably lessens 
usability. The two systems that do have 
a graphical interface (Encyclopedia of 
the Mouse, developed under the leader- 
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Figure 5. A Screen in Map-ed 
Given the number of a starting clone, map-ed deduces the a priori contig containing that clone, retrieves the corresponding objectives 
from the database, and computes the map of the contig using GCAA. The map is displayed and may be edited, printed, and saved. 
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ship of J. Nadeau of Jackson Laboratory 
in Maine, and ACEDB, developed by 
J. Thierry-Mieg of the Centre National 
de la Recherche Scientifique in France 
and R. Durbin of the Molecular Research 
Council in Britain) manage a set of 
related maps in a graphical electronic 
"book," but do not integrate all the data 
for one chromosome into a single map. 

We have developed a map-management 
system (described in "SIGMA: System 
for Integrated Genome Map Assembly") 
that gives a more integrated approach 
in two senses. First, map fragments 
given in different units are all stored 
as part of a single map structure, with 
a screen display that can be switched 
from one unit to another. And second, 
the experimental results, as summarized 
in the map objectives, are stored along 
with the map, so that the map can be 
evaluated or revised on the basis of 
the original data at any time. SIGMA 
has a graphical interface in the spirit of 
Computer-Aided Design/Manufacturing 
systems, in that it represents and allows 
manipulation of the data in a way that is 
close to the human conceptual model. 

In the stage of widespread ap- 
plication, Electronic Data Publish- 
ing makes communication efficient. 
Getting information from producer to 
consumer can easily cost more, in time, 
energy, and money, than generating 
the information in the first place. This 
is partly due to the massive amounts 
of information in the modem world. 
But it is also due to an increase in the 
number of places one must look: the 
number of possible pairwise interactions 
among N people is proportional to 
N^ . The modem information explosion 
creates a widespread need for a network 
infrastructure which makes saving, 
finding, and retrieving data as cheap 
as possible. 

A case in point is GenBank, an 
international collection of nucleotide 
sequence data managed at LANL for 

the last decade. The exponential growth 
of GenBank, described in "Decades 
of Nonlinearity: The Growth of DNA 
Sequence Data," has been due in part to 
the spread of sequencing as a singularly 
effective means of enquiry, and also to 
continual improvements in the efficiency 
of sequencing techniques. As sequenc- 
ing became more efficient, GenBank 
had also to continually improve the 
efficiency of the data-entry process, or 
else merely collecting the data would 
have taken an ever increasing share of 
the community's resources. 

GenBank pioneered in making use 
of the whole community's expertise to 
greatly increase the efficiency of the 
data-collection effort. How this was 
accomplished is described in "Electronic 
Data Publishing in GenBank." 

The main issue in retrieval is avail- 
ability. Currently many people in the 
GenBank user community are retrieving 
data from copies of GenBank updated 
by hand on local machines-copies 
that are often months out of date. 
These users fail to benefit from the 
rapid entry of newly available data 
into the central GenBank master copy. 
However, the same software that enabled 
us to implement the Electronic Data 
Publishing paradigm allowed us to 
easily log all changes to the database 
and send the resulting logs to so-called 
satellite copies of the database, thus 
updating those copies automatically. 
This mechanism provides a means by 
which an arbitrary number of copies 
of GenBank around the world can be 
brought up to date daily. 

Even more difficult than keeping 
many databases and database copies up 
to date is the problem of selection and 
retrieval: data are only available if one 
can find them. For the average user it is 
a significant problem to find out which 
database(s) might contain the needed 
data, and then finding out how to query 
the relevant database(s). The problem 

is compounded when the answer to a 
user's question is spread across a number 
of related databases-for example map 
information for a gene might be found in 
the Genome Data Base at Johns Hopkins 
University, the sequence of the gene in 
GenBank, and related literature listed 
in MedLine at the National Library of 
Medicine. 

This suggests that a key current 
need in information management is 
to make a large number of disperse 
and independently maintained databases 
appear to users as a single collection 
with a single query language. 

Both academic computer scientists 
and commercial vendors have made 
inroads on actually integrating multiple 
databases, each with some autonomy, 
into what appears to users as a single 
virtual collection. However at present 
the multiple databases must all be 
managed by the same vendor's software 
for this to be a workable solution. 

At present several groups in the 
molecular-biology community do pro- 
vide partial solutions to this problem. 
One approach, implemented, for exam- 
ple, in the Chemical Substances Infor- 
mation Network system developed by 
the Computer Corporation of America, 
the National Library of Medicine, and 
Bolt Beranek and Newman Laboratories, 
is to make a smart piece of interface 
software that incorporates a great deal 
of knowledge about many individual 
databases. The difficulty is that as the 
world changes this kind of software 
requires a great deal of expensive 
maintenance. Another, more common, 
approach is to import copies of many 
databases to a single machine, and 
convert them all to a single format. 
Here, again, updating the collections 
and maintaining the format conversion- 
software is a continuing difficulty. 

In data collection, Electronic Data 
Publishing led to a great increase in ef- 
ficiency by decentralizing responsibility 
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SIGMA: system for integrated 
genome map assembly 

Michael J. Cinkosky, James W. Fickett, William M. Barber, Michael A. Bridgers, and Charles D. Troup 

w t h  high-quality road maps available at stores everywhere, it is easy to forget 
just how much effort went into the production of the first accurate geographical 
maps. Even maps only a few hundred years old contain glaring errors, such as the 
early maps of North America that show California as an island. However, when one 
considers how difficult it was to obtain accurate information on which to base those 
maps, one can understand why the maps were so inaccurate. The human genome is 
at present about as difficult to explore as that early wilderness was. 

Although biologists have for some time been able to examine small regions in great 
detail, they are only now developing the experimental techniques that will allow the 
generation of reasonably detailed maps of each chromosome. Even now, data on 
the lengths of map elements and the distances between them are too fragmentary 
to use in building precise maps of entire chromosomes. In fact, with fragmentary 
data coming from many different types of experiments where even the units of 
measurement are incompatible, the present situation is remarkably similar to that of 
early cartographers who relied on the (doubtless contradictory) reports of numerous 
travelers returning from the area being mapped. 

Unlike early explorers, however, biologists today can bring the power of computers 
to bear on the problem. To this end, we are producing a special-purpose tool for 
building accurate genome maps called SIGMA (System for Integrated Genome Map 
Assembly). SIGMA applies several modem ideas including object-oriented databases, 
optimization theory, genetic algorithms, and interactive computer graphics. 

Building maps in SIGMA involves two basic activities: collecting information and 
drawing working maps (representations of the structure of the genome that are in 
reasonable agreement with experimental data). At the heart of the SIGMA system is 
an object-oriented database that stores all the data used in the map-building process, 
including all of the (potentially inconsistent) data on which the maps are based. 

Maps in SIGMA can be constructed either automatically (by routines discussed 
below) or by users. The primary interface to SIGMA is the interactive graphical 
map editor shown in the figure on the next page. With this editor, users can see the 
positions assigned to map elements and change the positions to build or improve 
maps. The editor works like computer-aided drafting and design tools to let users 
easily view and edit the map without requiring them to understand the structure of 
the database in which the map is stored. Furthermore, because the software was 
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A SIGMA window is shown above as it 

might appear on a user's computer screen. 

The window contains the SIGMA map 

canvas, here showing a portion of a map 

of human chromosome 16. The display 

includes several different types of map 

elements: chromosome bands (thick bars 

at the top of the canvas), chromosome 

fragments from hybrid-cell lines (thin blue 

lines), anonymous DNA markers from the 

Genome Data Base (red bars), cosmid 

clones from the Los Alamos mapping 

effort (orange bars), YACs (blue bars), 

genes (green bars), and fragile sites (black 

bars). (The clones and fragile sites are not 

drawn to scale in this view because they 

would be too small to see.) 

designed explicitly for genome maps, users have a wide choice of styles in which 
maps can be displayed, depending on the particular question of interest. 

One problem in integrating genome maps is that conversions between the various 
units employed vary from one region of the chromosome to another and are even 
non-linear. In SIGMA, the different scales are integrated by dividing the map into 
regions of arbitrary size in which users can specify linear conversions between 
various units. For instance, in one part of the chromosome a centimorgan (the 
unit of genetic distance) may be set equal to a million base pairs, while in another 
part a centimorgan may correspond to half a million base pairs. Users can freely 
change the units in which the map is displayed. In the figure above the chosen 
linear scale is spatial distance along a metaphase chromosome as observed under a 
microscope. Therefore SIGMA shows element lengths and inter-element distances 
given in base pairs, say, according to the conversion between base pairs and spatial 
distance assigned for the part of the chromosome in which the elements lie. 

SIGMA handles the problem of fragmentary data by treating the map-assembly 
process as an optimization problem. In optimization theory, one is presented with 
a number of (possibly inconsistent) statements that should be true about a solution 
to a particular problem. These statements, perhaps in conjunction with estimates of 
their certainty, are called "objectives". The goal is the generation of one or more 
solutions that satisfy the objectives as well as possible. 

For genome maps, an objective is typically either a statement about a single element in 
the map (such as, "This YAC is about 400,000 base pairs long"), or a statement about 
the positional relationship between two elements (such as, "These two clones probably 
overlap by about 10,000 base pairs"). Even a map of only modest complexity can 
be based on literally millions of such objectives, far more than a human can sensibly 
handle. SIGMA, on the other hand, easily tracks this quantity of information and 
can help users find maps that meet the objectives as closely as possible. The figure 
opposite shows the user's view of how SIGMA manages objectives. 
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Description: I from Lose AIamos flow-sorted library 

I 
. , Objectives 

Min. Length: 2850& -. !!.I bp Max. Length: 4100 bp 
Relationships: , Celt Line CY18 (Contained Within -.@8) 

Cell Line N-BH88 (Contained Within -.W) 
Cell Line N-TH2C (Contained Within -M} 

0@M Line CY185 (Does Mot Overlap -.98) 
OeH Line CY 1 $5 (Does Not Overlap -.96) 
Cell Line CY 1 80 (Doe& Not Overlap -.98) 

SIGMA includes special optimization routines to automate map assembly. (The 
routines currently use only objectives concerning clone lengths, clone-overlap 
probabilities, and lengths of overlaps, which are the data used in constructing contig 
maps.) The optimization is performed by algorithms inspired by natural genetics, 
called "genetic algorithms". (See the discussion of genetic algorithms in the main 
text.) Whether a map was made by the optimization routines or by hand, SIGMA can 
automatically evaluate how well it fits the objectives. Thus the user can edit the map 
interactively, seeing how each change affects the map's agreement with the data. 

As the map grows and new data become available, the collection of map objectives 
grows. Old objectives are never discarded unless a user explicitly deletes them. 
Because the objectives can be passed along to other users as part of a map, subsequent 
users of the map have access to all the information on which it is based, allowing 
them to make their own judgements about the correctness of the conclusions. This 
ability is very important when one laboratory's data appear to conflict with prior 
results from another group. Instead of being limited to the final product of the earlier 
work, the second team can look "inside" the map, examining the assumptions on 
which the map is based to find the specific causes of discrepancies. 

To demonstrate how SIGMA handles 

map objectives, one element, clone S33, 

has been selected in the map canvas; 

consequently its properties appear in the 

Element Properties Window (left). That 

window displays, in addition to the type, 

name, and description of the element, the 

graphical coordinates of the element in 

the canvas and some of the objectives 

involving the element. The first two 

objectives shown give the minimum and 

maximum lengths of clone S33 consistent 

with experiment. The objectives that 

follow state relationships inferred from 

experiments in which clone S33 was 

hybridized with a panel of hybrid-cell 

lines, each containing only a portion of 

chromosome 16. For each hybrid-cell line 

that the clone hybridized with, an objective 

has been created indicating that the clone 

lies within that chromosome fragment. 

For each hybrid-cell line that the clone did 

not hybridize with, an objective has been 

created indicating that the clone and that 

chromosome fragment do not overlap. All 

those objectives have been assigned a 

0.98 probability of being correct, based on 

the uncertainty of the experiments. Finally, 

the last two distances in the window are 

the maximum and minimum values of 

the distance between the left endpoint 

of the clone and the left endpoint of the 

highlighted hybrid-cell line. (If the two 

elements overlapped, the length of the 

overlap would be given; if they did not 

touch, the distance between them would 

be given.) 

Finally, SIGMA was designed from the beginning to be used with Electronic Data 
Publishing (see the sidebar "Electronic Data Publishing in GenBank" immediately 
following). Not only can users easily share data with other SIGMA users, but they 
can prepare submissions to the public mapping databases with just a few keystrokes. i 
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Electronic Data Publishing in GenB ank 
Michael J ,  Cinkosky, James W. Fickett, Paul Gilna, and Christian Burks 

Improvements in DNA-sequencing technology in the mid-1970's enabled re- 
searchers around the world to determine the exact sequence of nucleotides in samples 
of DNA much more easily than before (see "Decades of Nonlinearity: The Growth 
of DNA Sequence Data" above). Computers were the most convenient way to 
handle the large quantities of sequence data discovered using the new methods. 
Furthermore, since many people became interested in applying computer technology 
to interpreting those data, the data needed to be readable by computers. To meet 
those needs, Walter Goad created the Los Alarnos Sequence Library in 1979, which 
in 1982 became GenBank. 

Like many scientific databases at that time, GenBank was designed as a curated 
data repository. For its first several years of operation, the data were collected from 
published articles containing DNA sequence data in figures. The sequence data and 
related annotation (for example, information about the function and structure of the 
sequence) were typed into a computer and formatted into complete database entries, 
which were then distributed to users in both electronic and printed form. 

The limitations of this style of operation became obvious fairly early. The volume of 
data being generated continued to grow dramatically. It became increasingly difficult 
for the database staff to keep up with the flow of data, and the delay between 
publication of an article and appearance of the data in the database grew accordingly. 
At the same time, the data were becoming increasingly important to biologists, which 
aggravated the problem of slow turn-around time for data processing. 

Another problem was that a growing body of data would never, as the situation stood, 
appear in the database because it would never appear in print. Journals were already 
beginning to limit the amount of space that they would devote to printing nucleotide 
sequences; therefore, authors began omitting "uninteresting" sequence data (such as 
introns and other non-coding regions) from their papers. For computational biologists, 
however, those data are potentially of great interest and not having them in the public 
database would severely hinder some types of studies. Furthermore, in 1986 both 
the DOE and NIH began to talk about the Human Genome Project. If undertaken, 
that project would result in the generation of at least a thousand times the quantity 
of data that was already in the database, and probably far more. It was becoming 
critical to develop a different approach to building and maintaining the database. 

Electronic Data Publishing 

Reconsidering the problem made it clear that sequence data and results based on those 
data should be handled by completely separate communication methods. Whereas 
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scientific results needed peer review and an essentially free-form 
medium like the printed page, sequence data needed a largely 
automatic form of quality control and a highly structured, 
electronic format to be useful. To meet this need, we created 
what we call Electronic Data Publishing. 

In Electronic Data Publishing, the originators of the data retain 
responsibility for the data in much the same way that they retain 
responsibility for the contents of published articles. Rather than 
being communicated primarily through journal articles, the data 
are deposited directly into an electronic database, and a separate 
article referring the reader to the appropriate database entries is 
published in a traditional journal. The database staff provides 
tools to help the originators get their data into the database, as 
well as software to provide automatic checks on the quality and 
integrity of the data. 

To speed the transition to this new model, we enlisted the aid 
of many of the editors of the journals in which most of the 
sequence data were appearing. Because they were as acutely 
aware of the problems as we were (they were particularly 
interested in reducing the number of pages devoted to the 
printing of sequence data), many agreed to require submission 
of the data to the database before a paper discussing the data 
could appear in their journals. Within a year we were receiving 
a significant percentage of our data in electronic form before 
the related article appeared in print. 

Table 1. Divisions of GenBank I 
Division Number Change in Number Change in 

of number of of number of 
entries entries bases bases 
(June since (June since 
1992) March 1 992) March 

1 992 
-- - 

1992 

Bacteriophage 779 

Other viruses 7,750 

Bacteria 7,965 

Organelles 2,241 

Plants and fungi 6,196 

Invertebrates 6,079 

Rodents 12,737 

Primates 15,996 

Other mammals 2,660 

Other vertebrates 3,250 

RNA 2,698 

Unannotated 1,649 

Synthetic3 1,282 

Total 71,282 6,220 92,165,158 8,270,506 

- 

Implementation of the Electronic Data Publishing model also required the devel- 
opment of a large software system with several major components. First, we 
designed and built a relational database to store the data in a far more structured 
manner than was practical with our original ASCII-text database format. Then we 
built an interactive, window-based interface to this database, called the Annotator's 
WorkBench, which enables people to work directly on the contents of the database. 
We also worked with the European Molecular Biology Laboratory and the DNA 

'As part of our curation of GenBank, we often combine duplicated sequ&cS data into a single 
representation. In the Bacteriophage division between January and March 1992, the amount of data 
submitted was less than the amount of duplicate data merged, so the net change during that period 
was a decrease. 

2 ~ h e  Unannotated division of the database was formerly used to distribute data quickly by releasing them 
to the public in raw form prior to the more detailed work of annotation. No data have been added to this 
division for some time. We continue to relocate sequences from this division to their appropriate taxonomic 
division through annotation, resulting in a decrease of the amount of data classed as unannotated. 

3~ynthetic DNA includes such laboratory-constructed DNA as short oligonucleotide probes, cloning 
vectors, expression vectors, synthetic genes, etc., which cannot readily be considered as originating from 
single taxonomic species. 

Number 20 1992 Los Alamos Science 27 1 



Computation and the Genome Project/Electronic Data Publishing 

-- 

Databank of Japan to develop systems ror sharing 
Table 2. Amount of Sequence Data from Well Studied Organisms data, so that researchers need enter data into only one 

1 of the three databases. Finally, we created a format 
bhnber of Percent for automatically processable database submissions 
genome of total 

Bases data in and wrote software to aid in the preparation of these 
Organism sequenced sequenced database 1 submissions, which is distributed freely to anyone 

requesting it. Data submitted in that format are run 
C. elegans (nematode) 0.54 x 106 0.007 0.7 directly into the database, where the database staff can 
E. coli (bacterium) 2.81 x 106 0.597 3.6 easily use validation software that we have written to 

S. cerevisiae (yeast) 2.95 x 106 0.203 3.8 check the data for biological consistency. (As a simple 

D. melanogaster (fruit fly) 3.02 x 1 O6 0.01 8 example, the software checks that exons do not contain 

M. musculus (mouse) 6.89 x 106 0.002 8.9 

3-9 I stop codons). 

H. sapiens 13.44 x 1 O6 0.005 17.4 1 
The impact of these changes on our operation has been 

-- dramatic. We now receive about 95 percent of our 
data directly from researchers, mostly in automatically processable form. In 1984, 
we processed sequences containing approximately 1.38 million nucleotides. At that 
time, it was taking, on average, more than one year from publication for data to 
appear in the database at a cost of approximately $10 per base pair. In 1990, we 
processed 10 times as much data (about 14.1 million nucleotides) with an average 
turn-around time of two weeks at a cost of roughly $0.10 per base pair. Further, 
we have been able to maintain this performance since 1990, despite the fact that 
the rate of submissions has more than doubled to 30 million base pairs per year 
in the first half of 1992. 

A brief survey of the contents of GenBank indicates the extent of sequence data 
and the areas in which biologists have been particularly interested. Table 1 shows 
the contents as of release 72 (June 1992) broken down by taxonomic and other 
categories of origin. Approximately half the data are from expressed regions, the 
rest being primarily introns and sequences immediately upstream and downstream 
of genes. A new development is the submission of thousands of rough sequences, 
each a few hundred base pairs long, from human cDNAs (see pages 136-139 in 
"Mapping the Genome"). 

About 2850 organisms (including viruses) are represented in GenBank. The only 
completely sequenced genomes are from viruses and cell organelles (mitochondria 
and chloroplasts), ranging in size from a few hundred base pairs for certain plant 
viruses to more than 200 kilobase pairs for the cytomegalovirus. Table 2 gives 
information (as of December 1991) on the organisms to which the most sequencing 
effort has been devoted. (The heading, "number of genome equivalents," means 
the ratio of the number of bases sequenced from that organism to the number in 
its genome, without the subtraction of any duplications in the database.) In one 
notable recent change, the amount of sequence in the database from the nematode 
Caenorhabditis elegans increased by a factor of about 7.7 between December 1988 
and December 1991, 2.5 times larger than the increase of the database as a whole. 
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for the data. The idea of using computer 
networks to decentralize information 
management and place responsibility 
for different tasks wherever these tasks 
may most efficiently be placed, we term 
Commonwealth Informatics. We think 
Commonwealth Informatics will be an 
important strategy for many aspects 
of managing information in the next 
decade. 

For retrieval from multiple databases, 
Commonwealth Informatics would be 
implemented by building multi-database 
access software that depends on a single 
protocol for integrating databases across 

the network, while leaving the connec- 
tion between the multi-database access 
system and the individual databases up 
to the team at each database site (for 
example, GenBank and GDB). Aside 
from the software development, the 
only centralized component of this 
retrieval scheme is an index to the 
available databases and the kinds of 
information in each. A first step in this 
direction is the Listing of Molecular 
Biology Database (LiMB), a database 
of databases currently maintained by 
G. Redgrave under the direction of 
C. Burks at Los Alamos. 

We are beginning to learn 
to read the genetic program 

As DNA sequence accumulates and 
is made widely and flexibly available 
by means of networked databases, 
significant progress is being made in 
learning to read the genetic programming 
language. The fundamental question is 
this: given the sequence of some region 
of the genome, can we discern where the 
genes are, under what conditions they 
are expressed, and what the function of 
the products might be? 

Even very simple and partial answers 
to these questions have great practical 

importance. For example, until a few 
years ago diabetes was treated with 
either porcine or bovine insulin, avail- 
able as by-products of the meat indus- 
try. Now human insulin is routinely 
made by means of a synthesized gene 
implanted in a genetically altered bac- 
terium. (Though this artificial human 
insulin is widely used, not everyone 
agrees that it is an improvement over 
animal insulin. Some studies indicate 
that artificial human insulin produced in 
genetically engineered plants may un- 

dergo more human-like post-processing 
of the protein product than artificial 
insulin produced in bacteria.) While 
the protein products of the synthetic 
bacterial gene and the natural human 
gene are identical, the two genes are 
quite different. In fact, the natural 
human gene would not even function 
in a bacterial cell. The human gene 
has two introns; because bacteria cannot 
excise introns, the synthetic gene must 
have none. The human gene has control 
elements that turn on the gene only 
when needed. The bacterial version 
has a control element that maintains 
maximum production levels at all time. 
Even the codons that are used in the 
synthetic gene, while specifying the 
same sequence of amino acids as those 
in the natural gene, have been chosen 
to maximize the rate of production. 
The design and implementation of 
this synthetic gene is made possible 
by a very incomplete, but still very 
powerful, understanding of the bacterial 
programming language. 

Again, many genetic diseases are far 
better understood now than they were 
only a few years ago, because the region 
of the genome in which the defect lies 
has been located and the cause of the 
disease studied directly. Sickle-cell 
anemia results from a single-nucleotide 
change in the alpha hemoglobin gene 
(a 0.0000000002 percent change in the 
genome). The gene whose corruption 

Natural gene . G C A  GAG GAC CTG CAG G 

1 / 
Artificial gene ... GOT GAA GAG CTT CAA GTG GGT ... 

Commonproduct ... Ala Glu Asp Leu Gin Val Gly ... 

Figure 6. Comparison of Part of the Natural and Artificial Human Insulin Genes 
The regions of the natural gene just preceding and just following the second intron are shown, along with the corresponding part 
of the artificial gene. The intron has been deleted in the latter. Note also that the two genes have different sequences, but the 
same protein translation. 
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Sequence 1 Sequence 2 
ACAGTGA ACATAA 

Possible alignment 
A C A G T G A  - - -  
A C A  T A A  

indel A- Ã̂‘Ã mismatch 

Figure 7. A Simple Alignment 
Shown is one possible alignment 
between the two sequences ACAGTGA 
and ACATAA. In order to match bases 
near each end, a deletion has been 
introduced in the second sequence 
(shown by '-'). A horizontal line between 
the two sequences indicates a matching 
base; a space indicates a mismatch. 

causes cystic fibrosis was located in 
1989, and the change in function of the 
encoded protein is now being elucidated. 
Several specific forms of gene therapy, 
in which the defective region of the 
genome is repaired, are being tested in 
clinical trials. One important component 
of elucidating and treating genetic 
defects is the computational technology 
for analyzing sequence data to find and 
interpret genes. 

The tool most used for analyz- 
ing sequence data is calculation of 
similarity. When a gene is newly 
sequenced it is very desirable to discover 
its biochemical means of action. The 
state of our knowledge does not allow 
us to predict the enzymatic activity of a 
protein from its sequence, but we often 
can shed important light on the function 
of a newly sequenced gene by comparing 
it with all other known sequences (as one 
who is just learning a foreign language 
can guess at the meaning of a phrase 
by comparing it with similar sounding 
known phrases). If there is a similarity to 
some gene that has already been studied, 
anything known about the biochemistry 
of the previously sequenced gene may 
help decipher the workings of the 
newly sequenced one. Of course, 
such comparison normally suggests 

hypotheses and further experiments, 
rather than completely elucidating the 
function of the sequence. 

There are a number of difficulties in 
finding meaningful alignments between 
pairs of sequences. At the root of these 
difficulties is the fact that biologically 
meaningful alignments contain both 
mismatches and indels (short for "in- 
sertions or deletions"). Figure 7 gives 
a simple example of an alignment; a 
longer example without indels appeared 
in Figure 2. 

The most basic alignment algorithm 
is the so-called dynamic-programming 
algorithm, first described in print by 
S. Needleman and C. Wunsch, and still 
widely used in several variations. The 
purpose of this algorithm is to find 
that alignment which has the lowest 
cost, where the cost is the number of 
mismatches times a preset mismatch 
penalty, plus the number of indels 
times a preset indel penalty. If the 
sequences are A = a l a 2 . .  . a ~  and 
B = bl h2 . . . b N ,  the algorithm proceeds 
by calculating inductively all optimal 
alignments between initial segments of 
A and initial segments of B. That 
is, let Am be the string consisting of 
the first m characters of A (where 
1 < m < M),  and Bn be the string 
consisting of the first n characters of B  
(where 1 < n < N). Then the algorithm 
calculates the best alignment between 
every Am and every Bn by extending 
shorter alignments one base at a time. 
The scores of those alignments can be 
laid out in an M x N matrix in which 
the (m, n) element, in the (m  + 1)st 
column and (n + 1)st row, is the optimal 
score for aligning the first m characters 
of the first (top) sequence with the first n 
characters of the second (side) sequence. 
Figure 8 shows such a matrix. 

The first alignments constructed are 
the trivial ones between the Am's and the 
empty sequence as well as those between 
the Bn's and the empty sequence; their 

scores are the costs of deleting those 
segments, which are the indel penalty 
times m or n respectively. Those 
scores appear in the top row and left 
column of the matrix in Figure 8. The 
remaining alignments and their scores 
are calculated as follows. The best 
alignment between Am and Bn is the 
best of these three possibilities, all based 
on previously calculated alignments 
between shorter sequences: (1) the 
best alignment of A 1 with B l ,  
followed by a match or mismatch of 
am with bn, or (2) the best alignment 
of Am with B 1, followed by the 
deletion of bn, or (3) the best alignment 
of A 1 with Bn, followed by the 
deletion of am. Constructing all the 
alignments of initial segments results in 
calculating the best alignment of A with 
B  as the culmination of the process. 
Figure 8 shows how the process aligns 
the sequences in Figure 7. 

Quite different optimal alignments 
may result, depending on whether un- 
translated gene (nucleotide) or translated 
protein (amino acid) sequences are com- 
pared, and depending on what scoring 
scheme is used. Current consensus is 
that the most functionally meaningful 
alignments between related genes are 
found by aligning protein sequences 
with a scoring scheme that takes into 
account chemical similarity between 
different amino acids. 

Speed is a major concern in search- 
ing databases for similar sequences. 
When a sequence is newly determined, 
the investigator will normally want 
to compare it to every sequence in 
GenBank, both to find out if the DNA 
fragment has been sequenced before, 
and to try to discover the function of 
the DNA sequenced by comparison 
with other, related, sequences (from 
the same or different organisms). The 
straightforward dynamic-programming 
algorithm described above would, if 
applied to a typical sequence of 1000 
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bases, take on the order of a day on the 
fastest general-purpose single-processor 
computers. Faster response time is very 
desirable, so considerable effort has gone 
into accelerating comparison between a 
single "query" sequence and a database. 

Specialized hardware can greatly in- 
crease the speed of searching a database. 
For example the problem is almost 
trivially parallelized: R. Jones of Think- 
ing Machines has written algorithms, 
for the CM2 connection machine with 
64,000 processors, that split the database 
among the processors so that each 
one only does a few comparisons. In 
another direction, T. Hunkapillar of the 
California Institute of Technology has 
implemented the dynarnic-programming 
algorithm in hardware, producing the 
so-called BISP (Biological Information 
Signal Processing) VLSI chip. The BISP 
chip is not yet widely available, but is 
reported to be capable of comparing a 
query sequence (of any length) against 
a database at the rate of 12,000,000 
database nucleotides per second. This 
makes database access, rather than 
algorithm speed, the rate-limiting step 
for most applications. 

Databases are most often searched on 
personal computers and workstations. 
Thus another approach that has been 
extensively pursued is to narrow the 
search and make detailed searches only 
in promising areas. First the database is 
pre-indexed by making a so-called "hash 
table" of all "words" (subsequences) of a 
given length (typically 4- 10). Then each 
time the program is run, all locations in 
the database of all words of the chosen 
length from the query sequence are 
found using the hash index. Finally, 
where there are promising "clumps" of 
matches, more detailed comparisons are 
made using the dynamic-programming 
algorithm. W. Pearson (U. Virginia) 
and D. Lipman (National Library of 
Medicine) pioneered this approach with 
an algorithm called FASTA. 

Sequence 1 

A C A G T G A  
- 

1 2 3 4 5 6 7  

- 1 3 4 5  

3 2 1  2 3 4  

4 3 2 1 1 1 2 3  

\ 
5 4 3 2 2 2 2 2  

\ 
6 5 4 3 3 3 3 2  

Figure 8. An Illustration of 
Dynamic Programming 
The two sequences are those shown in 
Figure 7, and the scoring scheme is the 
simple one where the cost of both mis- 
matches and indels Is 1. The matrix shows 
the scores of all optimal alignments of 
initial segments of the two sequences. The 
first row and first column of the matrix give 
the trivial initialization scores, equal to the 
costs of simply deleting the corresponding 
initial segments. The matrix is then filled in 
one row at a time, from top to bottom and 
left to right. The induction step described 
in the text may be illustrated with the matrix 
cell containing a 1 boxed in red [the (4,3) 
element]. The value of 1 in this cell is cal- 

culated on the basis of the values in the (3,2), the (4, 2), and the (3, 3) cells (all highlight- 
ed) as follows. The best score for aligning ACAG of the top sequence with ACA of the side 
sequence must logically include one of three shorter alignments: (1) An alignment of 
ACA from the top sequence with AC from the side sequence. The best score of such an 
alignment is 1 [in the (3, 2) cell]. (2) An alignment of ACAG from the top sequence with AC 
from the side sequence. The best score of such an alignment is 2 [in the (4, 2) cell]. (3) An 
alignment of ACA from the top sequence with ACA from the side sequence. The best score 
of such an alignment is 0 [in the (3, 3) cell]. In case 1 the rule given in the main text calls 
for extending the alignment of ACA with AC to an alignment of ACAG and ACA by a mis- 
match of G with A, which would give a score of 2 for the boxed element. In case 2, the 
alignment between ACAG and AC is extended to an alignment between ACAG and ACA by 
a deletion of the A at the end of the second sequence, giving a score of 3. Finally, case 3 
requires a deletion of G from the first sequence, resulting in a score of 1. The best of these 
three scores is 1, so this Is what appears in the box. Once the matrix is full, the program 
chooses the best score along the right and bottom edges, and works backwards through 
the matrix to find what shorter alignments gave rise to this best score. The black line 
shows the set of best shorter alignments, and hence the best alignment, for these two 
sequences. Given the scoring system used, the best alignment is that shown in Figure 7. 

An even faster algorithm called BLAST 
(Basic Local Alignment Search Tool) has 
been developed by S. Altschul, W. Gish, 
W. Miller, E. Myers, and D. Lipman, 
at the National Library of Medicine, 
Pennsylvania State University, and 
University of Arizona. BLAST first 
compiles a list of the words in the query 
sequence, then expands it to include all 
words "near" these-that is, such that 
the score of a no-gap alignment with 
one of the words in the query sequence 
meets a certain cutoff-and then uses the 

hash table to find promising sequences 
for more detailed analysis. On such 
sequences BLAST extends the word 
matches to longer segment matches, 
but does not perform the full dynarnic- 
programming algorithm. Running with 
typical parameters on a Sun Sparcstation, 
BLAST can search GenBank in about 
twenty seconds. With these algorithms 
there is always a chance of missing 
an unusual alignment that does not fall 
within the initial pre-screening criteria. 
However, most investigators consider 
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the trade-off of sensitivity for speed to 
be quite acceptable. 

The amount of sequence data will 
continue to grow rapidly. However with 
accompanying advances in hardware, 
and with refinements of current algo- 
rithms, it appears that comparing new 
sequences with the corpus of known data 
will remain practical, and an important 
source of insight. 

Finding genes. The central functional 
component of the genome is the gene, 
which may be defined in computational 
terms as a pattern imposed on the DNA 
sequence, resulting in a protein (or, 
sometimes, RNA) product. (See "The 
Anatomy of a Gene" in "Understanding 
Inheritance.") At the present time there 
is no sure way, either experimental or 
computational, to locate all the genes 
in a DNA sequence. However compu- 
tational techniques can provide a very 
useful starting point in locating likely 
candidates for genes. The techniques 
are particularly well developed for 
finding genes coding for RNA that is 
not translated into protein. For instance, 
G. Fichant and C. Burks of LANL have 
developed a highly effective algorithm 
for finding tRNA genes. The rest of this 
discussion will refer only to the more 
complex problem of finding protein- 
coding genes. 

Computer recognition of genes is not a 
simple problem. As far as we understand 
at the moment, there are no simple, local, 
key patterns that one can use to detect 
the presence of genes. For example, 
every triplet of bases that occurs as a 
codon in genes (where it stands for a 
particular amino acid; see "The Genetic 
Code" in "Understanding Inheritance") 
also occurs many millions of times 
outside of genes, with no meaning that 
we yet recognize. Thus solving the 
gene-recognition problem depends on 
integrating information from a number 
of clues spread out over thousands of 
bases of sequence. 

In the long run, as we seek to under- 
stand how the genome works, our hope 
is to know how the cell recognizes 
genes. That is, we want to know 
what the enzymes are that control 
gene expression and how they recognize 
control sites on the DNA. Much progress 
has been made in elucidating the control 
of transcription and translation of genes 
in prokaryotes (simple one-celled organ- 
isms without nuclei). But the control 
of gene expression in humans is much 
more complicated, and the computer 
recognition of human control elements 
is still in its infancy. 

There is, however, another approach. 
While we do not yet know enough about 
DNA-protein interaction to recognize 
genes the way the cell does, we can 
recognize certain patterns in a gene 
region that are side-effects of the way 
the gene is built. The simplest pattern is 
called an open reading frame. Reading 
frames are the six possible ways in which 
any stretch of DNA can be interpreted as 
a string of codons, depending on which 
strand is read and on whether a given 
base is interpreted as the first base of 
a codon, the second, or the third. A 
reading frame is said to be open in a 
region where it contains no stop codons, 
which are the triplets of bases that signal 
the end of translation of mRNA into 
protein. (See "The Genetic Code" and 
"Protein Synthesis" in "Understanding 
Inheritance.") In most organisms the stop 
codons on the sense strand of a gene are 
TAG, TAA, and TGA. (The sense strand 
has a base sequence equivalent to that 
of the mRNA.) Figure 9 shows the three 
reading frames of one strand of a viral 
sequence; stop codons are marked. 

Since the genes of prokaryotes (and 
bacterial viruses) are uninterrupted, 
the protein-coding portions of their 
genes must lie in long continuous open 
reading frames. Most prokaryotic genes 
consist of at least fifty codons, and 
more typically hundreds, which do not 

include any stop codons. On the other 
hand, an entirely random sequence of 
bases contains stop codons on average 
about once in twenty-one triplets in 
each reading frame. Therefore long 
open reading frames in prokaryotic and 
bacteriophage genomes are likely to 
contain genes. The third reading frame 
in Figure 9 is an example. 

To find genes in eukaryotic genomes, 
one must look for more subtle patterns, 
mainly because eukaryotic genes are 
divided into exons (protein-coding re- 
gions) separated by introns (non-coding 
regions). Long open reading frames 
are still good candidates for exons, but 
some exons are as short as ten base 
pairs. Moreover, eukaryotic genomes 
contain long open reading frames that 
are not expressed. Therefore attention 
has turned to sequence patterns that 
distinguish coding from non-coding 
sequence. In the main, these patterns 
arise because coding sequences obey 
what are called codon preference rules. 
In most cases the same amino acid 
can be specified in genes by any of 
several synonymous codons. This 
latitude in choice of codon seems to 
be exploited systematically, in such 
a way that different bases are more 
common in different codon positions. 
For example T occurs more often at the 
second position of codons than at the first 
or third. The periodicity arising from 
these preferences is strikingly illustrated 
in the autocorrelation functions of the 
individual bases. Figure 10 shows 
the autocorrelation functions for the 
occurrences of T in coding and non- 
coding regions. 

A variety of statistical techniques can 
be used to detect the nonrandom choice 
of triplets in coding regions. Such 
measurements can give an algorithm 
which, on a sample of about 150 bases 
of sequence, can differentiate protein 
coding from noncoding regions about 95 
percent of the time. 
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The translated sequence starting from position 1 

5' 
521 4 51 84 

CGC CTC GGC CTC GOT ATT CCA GAA GTA GTG AGG AGG CTT TTT TGG AGG CCT AGG CTT 
Arg Leu Gly Leu Ala lie Pro Glu Val Val Arg Arg Leu Phe Trp Arg Pro Arg Leu 

TTG CAA AM GOT 
Leu Gin Lys Ala 

51 54 51 24 
TTG CAA AGA TGG ATA AAG TTT TAP ACA GAG AGG AAT CTT TGC AGO TAA 
Leu Gin Arg Trp lie Lys Phe 1 Thr Glu Arg Asn Leu Cys Sfr 

TGG ACC TTC TAG 
Trp Thr Phe 

5094 5064 
GTC TTG M A  GGA GTG CCT GGG GGA ATA TTC CTC TGA TGA GAA AGG CAT3 
Val Leu Lys Gly Val Pro Gly Gly lie Phe Leu $ 1 ~  Arg His 

The translated sequence starting from position 2 
521 3 51 83 

^GCC TCG GCC TCT GAG CTA TTC CAG AAG TAG TGA GGA GGC TlT TTT GGA GGC CTA GGC TTT 
Ala Ser Ala Ser Glu Leu Phe Gin Lys - - '"'v Gly Phe Phe Gly Gly Leu Gly Phe 

51 53 51 23 
TGC AAA AAG CTT TGC AAA GAT GGA TAA AGT TTT AAA CAG AGA GGA ATC TTT GCA GOT AAT 
Cys Lys Lys Leu Cys Lys Asp Gly Ser Phe Lys Gin Arg Gly lie Phe Ala Ala Asn 

5093 5063 
GGA CCT TCT AGG TCT TGA AAG GAG TGC CTG GGG GAA TAT TCC TCT GAT GAG AAA GGC ATA3' 
Gly Pro Ser Arg Ser 

- 
Lys Glu Cys Leu Gly Glu Tyr Ser Ser Asp Glu Lys Gly lie 

The translated sequence starting from position 3 

5' 
521 2 51 82 

CCT CGG CCT CTG AGC TAT TCC AGA AGT AGT GAG GAG GCT TTT TTG GAG GCC TAG GOT TTT 
Pro Arg Pro Leu Ser Tyr Ser Arg Ser Ser Glu Glu Ala Phe Leu Glu Ala ila Phe 

GCA AAA AGO TTT GCA AAG I 
Ala Lys Ser Phe Ala Lys 

51 52 51 22 
GAT AAA GTT TTA AAC AGA GAG GAA TCT TTG CAG CTA ATG 
Asp Lys Val Leu Asn Arg Glu Glu Ser Leu Gin Leu Met 

5092 5062 3, 

GAG CTT CTA GGT CTT GAA AGG AGT GCC TGG GGG AAT ATT CCT CTG ATG AGA AAG GCA TAT 
Asp Leu Leu Gly Leu GIu Arg Ser Ala Trp Gly Asn lie Pro Leu Met Arg Lys Ala Tyr 

Figure 9. A DNA Sequence in Three Reading Frames 
The nucleotides numbered 5243 to 5062 of the genome of the simian virus SV40 are shown. (The strand depicted is the one known to 
be the sense strand in this region.) Also shown are the three possibilities for the translation of the sequence, each using a different 
reading frame, or division of the sequence into triplets of nucleotides. In this part of the SV40 genome, the first two reading frames 
depicted contain many stop codons (translated as "END" and highlighted), so the region does not code for proteins when read in those 
frames. In the third reading frame (boxed), on the other hand, there is a long region without stop codons-a promising candidate to be 
a protein-coding region. In fact, experiments have demonstrated that the sequence shown does include the beginning of a gene, whose 
translation starts with the highlighted ATG codon. (In the great majority of mRNAs, translation starts with AUG, corresponding to ATG 
in the sense strand of the DNA and to methionine in the protein product.) (Adapted from a figure by Maxine Singer and Paul Berg. 
Genes and Genomes: a Changing Perspective. Mill Valley, CA: University Science Books, 1991.) 
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Rgure 10. Periodicity of T Due to Codon Preference Rules 
For each value of the separation n, the number of occurrences of the pattern T . . . T, with n nucleotides between the two T's, was counted. 
Plotted is the percent difference of that number from the number of such pairs expected if nucleotides occurred at random. Results are 
shown for all the coding sequences (a) and all the non-coding sequences (b) in GenBank when this study was performed (1982). Since 
T occurs preferentially at the second codon position, in coding regions the percent difference at n = 2, 5, 8 . . . is noticeably large. T's 
separated by two nucleotides, for Instance, are at corresponding positions in consecutive codons. No such pattern appears in non-coding 
regions. Results for the other bases and for pairs of unlike bases show similar differences between coding and non-coding regions. 

Research continues to find ever more 
accurate discrimination methods. R. Far- 
ber, A. Lapedes (both of Los Alamos), 
and K. Sirotkin (National Institutes of 
Health) report that a single-layer neural 
net reading each group of six consecutive 
bases can differentiate exonic from 
intronic sequences 180 bases long with 
a sensitivity well over 99 percent. With 
accuracies of 95 percent and sensitivities 
of 99 percent already in hand, the main 
hindrance to further development may 
soon be the accuracy of the databases. 
Though every care is taken by both 
investigators and database staff to make 
annotation both complete and correct, 
it is quite possible that the database 
annotation as to whether regions are 
coding or non-coding, by which these 

algorithms are measured, contains errors 
or omissions of a few percent. 

All known algorithms depending 
on codon preference (so-called region 
methods) are rather poor at picking 
out the precise endpoints of coding 
regions. Thus current emphasis in 
this field is shifting towards combin- 
ing region methods with recognition 
methods for biochemically active sites 
of transcription and translation initiation, 
intron splicing, etc. Two such systems 
have now been described in print and 
publicly disseminated: GM (for Gene 
Modeler), written by C. Fields (National 
Institutes of Health) and C. Soderlund 
(Los Alamos), and GeneID, written by 
R. Guigo (Los Alamos), S. Knudsen 
(University of West Florida), N. Drake 

(Tufts University) and T. Smith (Brown 
University). 

Both of these programs analyze many 
different patterns over a large stretch 
of sequence, integrate the results, and 
present the user with a number of 
possible ways in which a gene or genes 
might be encoded in the sequence. The 
state of the art is that programs can 
suggest possible genes, and that the 
real genes in the region are likely to be 
at least variants of the ones proposed. 
It is not possible at present to predict 
the precise form of the gene or the 
conditions under which it is expressed. 

Prediction of structure and function 
of proteins. Current techniques for 
the interpretation of sequence data are 
almost universally of what one might 
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call a linguistic nature: they depend on 
the existence or frequency of certain 
simple patterns of letters in the DNA- 
sequence string. However it is not to 
be forgotten that the basis for all the 
effects of DNA in the living cell is 
the three-dimensional shape and charge 
distribution of biomolecules. In the 
long run, our understanding of the 
biochemistry of DNA, and therefore 
of the principles underlying the DNA 
programming language, will depend 
on our ability to relate the nucleotide 
sequence of DNA, and amino-acid 
sequences of protein, to the three- 
dimensional molecules of life. The 
promises of this infant science, a part of 
structural biology, are great, but remain 
mostly in the future. 

Summary 
The information gained from the 

Human Genome Project will reside 
in a very large database lining and 
describing tte program for consttucring 
and running die human body. With 
the development of new iftfottnation- 
manwecaent techniques this information 
will be efficiently gathered from, and 
distributed to, a loosely coordinated 
and global commtmity of scientists. 
Analysis tools are being developed to 
read the rename program and describe 
its fimcti~flality~ W e  our knowledge 
of the bidogieal piogrammmg language, 
and the tools we have to interpret it, are 
both at an early stage, they arc also both 
very power&I, giving daily fundaroental 
new insighte into the workings of cells, 
organs aid oqpnisffls, and leading to 
more powerful biotechnology. m 
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